x^2+4=(x+1)+(x+3)

Simple and best practice solution for x^2+4=(x+1)+(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+4=(x+1)+(x+3) equation:



x^2+4=(x+1)+(x+3)
We move all terms to the left:
x^2+4-((x+1)+(x+3))=0
We calculate terms in parentheses: -((x+1)+(x+3)), so:
(x+1)+(x+3)
We get rid of parentheses
x+x+1+3
We add all the numbers together, and all the variables
2x+4
Back to the equation:
-(2x+4)
We get rid of parentheses
x^2-2x-4+4=0
We add all the numbers together, and all the variables
x^2-2x=0
a = 1; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·1·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*1}=\frac{0}{2} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*1}=\frac{4}{2} =2 $

See similar equations:

| -3y+5y+15=17 | | -5v+3v-15=-27 | | 10x+4×(3-2x)-6=8 | | x+134=3x+64 | | (x-1/2)^3=0 | | 22=-7u+4u+28 | | 6x/13=15 | | 3/8=n=32 | | 1*8+2*8+8*8+10*8+14*8+10*x=(70/100)*60*8 | | 1*8+2*8+8*8+10*8+14*8+10*x=(70/100)*8*10 | | 1*8+2*8+8*8+10*8+14*8+10*x=(70/100)*8*10+8*8+5*8+1*8+0*8+1*8 | | 1*8+2*8+8*8+10*8+14*8+10*x=(70/100)*60*10 | | (x^2-2)(4x^2+2x+1)=0 | | (2x+1/4)(5-3x)(1/3x-6)=0 | | -66=-6(n+6 | | 5x-63=3x-17 | | -62=-2(-5a+1) | | -125=5v-5(1-5v) | | 10h+4-6h=28 | | 5x=8x-216 | | 5+2x=8x-3x | | 2x/2–x–55=0 | | 0.275=x/2 | | x2+40x+391=0 | | 4c-9=3c | | 71/24=x/18 | | 2/3n=34/3+n | | 24/71=18/x | | 7x-1=3×+2 | | 5a-9=-11 | | 0,5x+14=6 | | 6m-1+5m+60=180 |

Equations solver categories